Nickel-Catalyzed Highly Regioselective Multicomponent Coupling of Ynamides, Aldehydes, and Silane: A New Access to Functionalized Enamides

ORGANIC LETTERS 2008 Vol. 10, No. 17 3829–3832

Nozomi Saito, Tomoyuki Katayama, and Yoshihiro Sato*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan biyo@pharm.hokudai.ac.jp

Received July 7, 2008

ABSTRACT

A new method for preparation of functionalized enamides by a nickel-catalyzed multicomponent coupling of ynamides, aldehydes, and silane has been developed. The coupling reaction proceeded in the presence of a nickel-IMes catalyst to give the corresponding γ -silyloxyenamide derivative, which has an allylic alcohol moiety in the molecule, in a highly stereoselective manner.

Enamide is recognized as one of the important fragments found in some biologically active natural products¹ as well as a valuable substrate for the synthesis of optically active amines via asymmetric hydrogenation.² Therefore, many protocols for enamide synthesis have been developed to date. Recently, enamides have been synthesized with transition metal catalysis including isomerization of *N*-allylamide,³ hydroamidation of alkynes,⁴ vinylation of amides,^{5,6} oxida-

tive amidation of alkenes,⁷ and co-oligomerization of *N*-vinylamides with alkenes or alkynes.⁸ Furthermore, enamides can be synthesized by transition metal-catalyzed ynamide transformation:⁹ hydrogenation,¹⁰ hydro-, carbo-, and bismetalation,¹¹ as well as cycloaddition.¹² On the other hand, catalytic multicomponent coupling¹³ with ynamides as a

(12) (a) Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681.
(b) Villeneuve, K.; Riddell, N.; Tam, W. Tetrahedron 2006, 62, 3823.

⁽¹⁾ For recent reviews on natural products including enamide structure, see: (a) Yet, L. *Chem. Rev.* **2003**, *103*, 4283. (b) Joullié, M. M.; Richard, D. J. *Chem. Commun.* **2004**, 2011. (c) Tan, N.-H.; Zhu, J. *Chem. Rev.* **2006**, *106*, 840.

⁽²⁾ For reviews on asymmetric hydrogenation, see: (a) Ohkuma, T.; Kitamura, M.; Noyori, R. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I., Ed.; Wiley-VCH, Inc.: New York, 2000; pp 1–110. (b) Kitamura, M.; Noyori, R. In *Ruthenium in Organic Synthesis*; Murahashi, S.-i., Ed.; Wiley-VCH, Inc.: New York, 2002; pp 3–52. (c) Chi, Y.; Tang, W.; Zhang, X. In *Modern Rhodium-Catalyzed Organic Reactions*; Evans, P. A., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp 1–31.

^{(3) (}a) Stille, J. K.; Becker, Y. J. Org. Chem. **1980**, 45, 2139. (b) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A. Angew. Chem., Int. Ed. **2002**, 41, 4732. (c) Krompiec, S.; Pigulla, M.; Krompiec, M.; Baj, S.; Mrowiec-Bialon, J.; Kasperczyk, J. Tetrahedron Lett. **2004**, 5257, and references cited therein.

^{(4) (}a) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc., Chem. Commun. **1995**, 413. (b) Goossen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed. **1995**, 44, 4042. (c) Yudha S., S.; Kuninobu, Y.; Takai, K. Org. Lett. **2007**, 9, 5609.

⁽⁵⁾ For a review, see: Dehli, J. R.; Legros, J.; Bolm, C. *Chem. Commun.* **2005**, 973, and referencescited therein.

⁽⁶⁾ Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2019.
(7) (a) Hosokawa, T.; Takano, M.; Kuroki, Y.; Murahashi, S.-i. Tetrahedron Lett. 1992, 33, 6643. (b) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 12996. (c) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868.

⁽⁸⁾ Tsujita, K.; Ura, Y.; Matsuki, S.; Wada, K.; Mitsudo, T.; Kondo, T. Angew. Chem., Int. Ed. 2007, 46, 5160.

⁽⁹⁾ For recent reviews on chemistry of ynamine and ynamide, see: (a) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 7575. (b) Hsung, R. P., Ed. In Tetrahedron Symposiain-Print No. 118. *Tetrahedron* **2006**, *62*, 3783.

⁽¹⁰⁾ Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. **2006**, *71*, 4170.

^{(11) (}a) Hoffmann, R. W.; Brückner, D. New J. Chem. 2001, 25, 369.
(b) Timbart, L.; Cintrat, J.-C. Chem. Eur. J. 2002, 8, 1637. (c) Chechik-Lankin, H.; Livshin, S.; Marek, I. Synlett 2005, 2098. (d) Buissonneaud, D.; Cintrat, J.-C. Tetrahedron Lett. 2006, 47, 3139.

platform could also be an attractive methodology for the synthesis of functionalized enamides.

We have demonstrated nickel-catalyzed multicomponent coupling of 1,3-dienes, aldehydes, and silanes, in which the stereoselectivity was controlled by the property of the ligands.^{14–16} With this as a background, we planned nickel-catalyzed multicomponent coupling of ynamides, aldehydes, and silanes as a new method for stereoselective synthesis of functionalized enamides (Scheme 1). Thus, oxidative cycloaddition of ynamides 1 and aldehydes 2 to a zerovalent nickel complex could proceed to give oxanickelacycle I or II. The reaction of the nickelacycle with silane would afford the corresponding three-component coupling product β -alkylated enamide III or α -alkylated enamide IV.^{17,18} In particular, γ -alkoxy enamide III is known as a useful substrate for the synthesis of some important organic molecules.¹⁹

First of all, the reaction of oxazolidinone-derived ynamide 1a,²⁰ benzaldehyde (2a), and Et₃SiH (3) in the presence of Ni(0)-NHC catalyst, which was generated from Ni(cod)₂,

(15) For reviews on Ni(0)-catalyzed multicomponent coupling, see: (a) Ikeda, S.-i. Acc. Chem. Res. 2000, 33, 511. (b) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (c) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890, and references cited therein.

(16) For recent examples of Ni(0)-catalyzed multicomponent coupling, see: (a) Terao, J.; Nii, S.; Chowdhury, F. A.; Nakamura, A.; Kambe, N. Adv. Synth. Catal. 2004, 346, 905. (b) Kimura, M.; Miyachi, A.; Kojima, K.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2004, 126, 14360. (c) Shirakawa, E.; Yamamoto, Y.; Nakao, Y.; Oda, S.; Tsuchimoto, T.; Hiyama, T. Angew. Chem., Int. Ed. 2004, 43, 3448. (d) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 201. (e) Kimura, M.; Kojima, K.; Tatsuyama, Y.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 6332. (f) Cozzi, P. G.; Rivalta, E. Angew. Chem., Int. Ed. 2005, 44, 3600. (g) Ng, S.-S.; Ho, C.-Y.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 11513. (h) Ho, C.-Y.; Jamison, T. F. Angew. Chem., Int. Ed. 2007, 46, 782. (i) Chrovian, C. C.; Montgomery, J. Org. Lett. 2007, 9, 537. (j) Jayanth, T. T.; Cheng, C.-H. Angew. Chem., Int. Ed. 2007, 46, 5921. (k) Herath, A.; Li, W.; Montgomery, J. J. Am. Chem. Soc. 2008, 130, 469.

(17) For Ni-catalyzed three-component coupling of alkynes, which have alkyl, aryl, or silyl groups on the sp-hybridized carbon atom, aldehydes, and silanes by Montgomery, see: (a) Mahandru, G. M.; Liu, G.; Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698. (b) Sa-ei, K.; Montgomery, J. Org. Lett. 2006, 8, 4441. (c) Chaulagain, M. R.; Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc. 2007, 129, 9568. For other examples of Ni-catalyzed reductive alkyne-aldehyde coupling, see: (d) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (e) Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221. (f) Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3422. (g) Luanphaisarnnont, T.; Ndubaku, C. O.; Jamison, T. F. Org. Lett. 2005, 7, 2937.

(18) For a Ti-mediated reductive coupling of ynamides and aldehydes, see: Tanaka, R; Hirano, S.; Urabe, H.; Sato, F. *Org. Lett.* **2003**, *5*, 67.

(19) For recent examples of the preparation of γ -alkoxy enamide derivatives and their synthetic application, see: (a) McAlonan, H.; Murphy, J. P.; Nieuwenhuyzen, M.; Reynolds, K.; Sarma, P. K. S.; Stevenson, P. J.; Thompson, N. J. Chem. Soc., Perkin Trans. 1 2002, 69. (b) Ylioja, P. M.; Mosley, A. D.; Charlot, C. E.; Carbery, D. R. Tetrahedron Lett. 2008, 49, 1111.

IMes•HCl, and KOtBu, was carried out in THF at room temperature for 1 h. As a result, an enamide derivative **4aa** was obtained in 42% yield as a single isomer,²¹ and no other regio- and stereoisomer was observed. However, the alk-enylsilane **5**, which might be formed by hydrosilylation of **1a**,²² and significant amounts of the complex mixture of polymeric products of **1a** were also produced at the same time (Scheme 2).

It was thought that suppression of the formation of the above byproduct was necessary to improve the yield of **4aa**. Therefore, we next investigated the impact of the reaction procedure on byproduct formation (Table 1). First, a THF solution of ynamide **1a** and **2a** was slowly added to a mixture of Ni-IMes complex and Et₃SiH (**3**) in THF over a period of 14 h by a syringe pump (Method A). As a result, the yield of the coupling product **4aa** was improved to 69%, and no polymeric product of **1a** was observed. However, hydrosilylation compound **5** was also obtained in 26% yield. Next, slow addition of a THF solution of **1a** to the mixture of Ni-IMes catalyst, **2a**, and **3** in THF was carried out over a period of 14 h, giving the coupling product **4aa** in 73% yield along with starting ynamide **1a** in 19% recovery (Method B).

^{(13) (}a) Zhu, J.; Bienaymé, H., Eds. In *Multicomponent Reactions*; Wiley-VCH Verlag Gmbh and Co. KGaA: Weinheim, Germany, 2005. (b) Ramón, D. J.; Yus, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 1602.

^{(14) (}a) Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron Lett. **1998**, 39, 4543. (b) Sato, Y.; Sawaki, R.; Mori, M. Organometallics 2001, 20, 5510. (c) Sawaki, R.; Sato, Y.; Mori, M. Org. Lett. 2004, 6, 1131. (d) Sato, Y.; Hinata, Y.; Seki, R.; Oonishi, Y.; Saito, N. Org. Lett. 2007, 9, 5597. For Ni-catalyzed reductive coupling of 1,3-diene and aldehyde with iBu₂Al(aca), see: (e) Sato, Y.; Sawaki, R.; Saito, N.; Mori, M. J. Org. Chem. 2002, 67, 656. For three-component coupling with Me₃SiSnBu₃ instead of silane, see: (f) Sato, Y.; Saito, N.; Mori, M. Chem. Lett. 2002, 18. (g) Saito, N.; Mori, M.; Sato, Y. J. Organomet. Chem. 2007, 692, 460.

⁽²⁰⁾ In this work, the ynamides were synthesized by Hsung's Cucatalyzed coupling reaction of haloalkynes and amides. Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. *J. Am. Chem. Soc.* **2003**, *125*, 2368.

⁽²¹⁾ Olefinic geometry was determined by an NOE experiment. See the Supporting Information.

⁽²²⁾ For a hydrosilylation of alkyne with Ni-NHC catalyst, see: Chaulagain, M. R.; Mahandru, G. M.; Montgomery, J. *Tetrahedron* **2006**, *62*, 7560.

	10 mol % Ni(cod) 10 mol % IMes·H 12 mol % KOtBu Et ₃ SiH (3), THF,	CI O H OSIE nt ON Ph nBu 4aa	
		yield (%)	
$method^{a}$	4aa	5	1a
A	69	26	
В	73		19
С	91		

^{*a*} Method A: Slow addition of **1a** and **2a** in THF over a period of 14 h. Method B: Slow addition of **1a** in THF over a period of 14 h. Method C: Slow addition of **1a** in THF over a period of 7 h.

Finally, the only desired enamide derivative **4aa** was obtained in 91% by slow addition of the solution of **1a** in THF over a period of 7 h (Method C).

Using the optimal reaction procedure (Method C), study of the scope and limitations of aldehyde structure in the threecomponent coupling was conducted (Table 2). The reaction

Table 2. Scope of Aldehyde Structure in the Three-Componentcoupling. a

^{*a*} Reaction procedure (Method C: for details, see the Supporting Information): A solution of aldehyde **2** (3 equiv) in THF was added to a solution of ynamide **1a** (1 equiv), Et₃SiH (5 equiv), Ni(cod)₂ (10 mol %), IMes⁴HCl (10 mol %), and KOrBu (12 mol %) in THF over a period of 7 h by a syringe pump at room temperature. After the addition was finished, the reaction mixture was stirred for an additional 0.5 h. ^{*b*} After the slow addition was finished, the reaction mixture was stirred overnight.

with **1a** and aromatic aldehydes **2b** and **2c**, having an electron-donating group, gave the corresponding enamide derivatives **4ab** and **4ac** in low yield (runs 1 and 2). On the other hand, the reaction of **1a** and aldehyde **2d** and **2e**, which had an electron-withdrawing group at the para position on the aromatic ring, proceeded smoothly to give the coupling products **4ad** and **4ae** in 99% and 94% yield, respectively

(runs 3 and 4). When 4-chlorobenzaldehyde (**2f**) was used for the coupling reaction, the corresponding enamide **4af** was obtained in 61% yield (run 5). 4-Fluorobenzaldehyde (**2g**) reacted with **1a** and **3**, giving the enamide derivative **4ag** in 64% yield (run 6), and the reaction with 3-fluorobenzaldehyde (**2h**) provided the coupling product **4ah** in 96% yield (run 7). When 2-naphthaldehyde (**2i**) was reacted with **1a** under the same reaction conditions, the enamide product **4ai** was obtained in 91% yield (run 8). An aliphatic aldehyde such as isobutyraldehyde (**2j**) was also applicable to the three-component coupling, and the corresponding enamide derivative **4aj** was obtained in 48% yield as a single isomer (run 9).

Next, we turned our attention to investigation of the threecomponent coupling using various ynamides (Table 3). When

^{*a*} Reaction procedure (Method C: for details, see the Supporting Information): A solution of aldehyde **2** (3 equiv) in THF was added to a solution of ynamide **1a** (1 equiv), Et₃SiH (5 equiv), Ni(cod)₂ (10 mol %), IMes⁺HCl (10 mol %), and KOrBu (12 mol %) in THF over a period of 7 h by a syringe pump at room temperature. After the addition was finished, the reaction mixture was stirred for an additional 0.5 h. ^{*b*} After the slow addition was finished, the reaction mixture was stirred overnight.

methyl-substituted ynamide **1b** and **2a** were treated with **3**, coupling product **4ba** was obtained in 91% yield. The reaction of ynamides having a silylether tether (**1c** and **1d**) or acetal tether (**1e** and **1f**) with **2a** and **3** gave the corresponding γ -silyloxyenamide derivatives **4ca**-**4fa** in moderate to good yield (runs 2–5). Ynamides having an ester group **4g** reacted with **2a** and **3** to give the product **4ga** in 53% yield (run 6).

The possible reaction course of the regioselective threecomponent coupling of ynamides, aldehydes, and silane is shown in Scheme 3. Under the conditions using Method C, the aldehyde 2 coordinates to zerovalent Ni complex to give η^2 -aldehydenickel intermediate 6.²³ Next, the reaction of ynamide 1 with the complex 6 would proceed to give oxaniceklacycle 7 regioselectively. Then cleavage of the

⁽²³⁾ For examples of the formation of η^2 -arylaldehydenickel complexes from zerovalent nickel complex and aldehyde, see: (a) Walther, D. J. Organomet. Chem. **1980**, 190, 393. (b) Ogoshi, S.; Kamada, H.; Kurosawa, H. Tetrahedron **2006**, 62, 7583.

nickel—oxygen bond by σ -bond metathesis (depicted as **8**) of the nickelacycle **7** with Et₃SiH (**3**) would afford hydridenickel intermediate **9**. Finally, the reductive elimination from **9** would occur to afford the γ -silyloxyenamide derivative **4** in a regio- and stereoselective manner.^{24,25}

To gain an insight into the high regioselectivity of the ynamide—aldehyde coupling, the structural and electronic properties of ynamide were investigated by DFT calculation at the B3LYP/6-31G* level utilizing Spartan'06 (Wavefunction, Inc., Irvine, CA). Figure 1 illustrates the highest occupied molecular orbital (HOMO) of geometrical

Figure 1. HOMO of geometrically optimized ynamide **1b**. The values show natural charge at C_{α} and C_{β} positions.

optimized ynamide **1b** along with the natural charge at C_{α} and C_{β} positions. The calculation results suggested that the

HOMO of **1b** exists on the carbon–carbon triple bond and that β -carbon has a negative charge. This means that the β -carbon would be more nucleophilic than the α -carbon.

On the basis of the above insight from the calculation results, one reason for the highly regioselective formation of oxanickelacycle **7** in the possible reaction mechanism might be the electronic properties of ynamide (Scheme 4).

Scheme 4. Possible Reason for Regioselective Formation of Nickelacycle 7

That is, at the oxanickelacycle formation stage, the reaction would proceed as the negatively polarized carbon at the β -position of ynamide 1 might interact with the positive carbonyl carbon of aldehyde 2 (illustrated as 10) and carbon–carbon bond formation would occur between those two carbons.²⁶ Consequently, only oxanickelacycle intermediate 7 would be produced in a regioselective manner.

In summary, we have developed a new method for the synthesis of functionalized enamides by a nickel-catalyzed multicomponent coupling of ynamides, aldehydes, and silane. The coupling reaction proceeded though carbon–carbon bond formation between β -carbon of ynamides and carbonyl carbon of aldehydes to afford γ -silyloxyenamide derivatives in a highly regio- and stereoselective manner. Further studies along this line are now in progress.

Acknowledgment. A part of this work was supported by a Grant-in-Aid for Science Research on Priority Areas (No. 19027005, Synergy of Elements) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and by a Grant-in-Aid for Scientific Research (B) (No. 19390001) from the Japan Society for the Promotion of Science (JSPS). N.S. acknowledges the Akiyama Foundation for financial support.

Supporting Information Available: Experimental details and spectral data of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801534E

⁽²⁴⁾ Recently, oxanickelacyclopentene from zerovalent nickel, aldehyde, and alkyne was isolated and its structure was elucidated by X-ray analysis, see: Ogoshi, S.; Arai, T.; Ohashi, M.; Kurosawa, H. *Chem. Commun.* **2008**, 1347.

⁽²⁵⁾ Montgomery suggested the reaction mechanism via oxanickelacyclopentene formation followed by σ -bond metathesis with silane in his three-component coupling of alkynes, aldehydes, and silanes using Ni-NHC catalyst. See refs 17a and 17c.

⁽²⁶⁾ Similar regioselectivity has been observed in Lewis acid-mediated coupling of ynamides and aldehydes or ketones demonstrated by Hsung, see: You, L.; Al-Rashid, Z. F.; Figueroa, R.; Ghosh, S. K.; Li, G.; Lu, T.; Hsung, R. P. *Synlett* **2007**, 1656.